Partial Differential Equations: Final Exam
Aletta Jacobshal 03, Monday 4 April 2016, 14:00-17:00
Duration: 3 hours

- Solutions should be complete and clearly present your reasoning.
- 10 points are "free". There are 6 questions and the total number of points is 100 . The final exam grade is the total number of points divided by 10 .
- Do not forget to very clearly write your full name and student number on the envelope.
- Do not seal the envelope.

Question 1 (14 points)

Consider the equation

$$
\begin{equation*}
2 y u_{x}+u_{y}=0, \tag{1}
\end{equation*}
$$

where $u=u(x, y)$.
(a) (10 points) Find the general solution of Eq. (1).

Solution

We consider the equation for the characteristic curves

$$
\frac{d x}{d y}=2 y,
$$

which can be directly integrated as

$$
x=y^{2}+C .
$$

Therefore $C=x-y^{2}$ is the constant of integration and the general solution is

$$
u=f\left(x-y^{2}\right) .
$$

(b) (4 points) Find the solution of Eq. (1) with the auxiliary condition $u(x, 0)=\sin \left(x^{2}+1\right)$.

Solution

For $u(x, 0)=\sin \left(x^{2}+1\right)$ we have $u(x, 0)=f(x)=\sin \left(x^{2}+1\right)$. Therefore

$$
u(x, y)=\sin \left(\left(x-y^{2}\right)^{2}+1\right) .
$$

Question 2 (14 points)

Consider the equation

$$
\begin{equation*}
u_{x x}-2 u_{x y}+5 u_{y y}=0 . \tag{2}
\end{equation*}
$$

(a) (4 points) What is the type (elliptic / hyperbolic / parabolic) of Eq. (2)? Explain your answer. Solution
We have $a_{11}=1, a_{12}=-1$, and $a_{22}=5$. Therefore

$$
a_{11} a_{22}=5>1=a_{12}^{2} .
$$

Therefore the equation is elliptic.
(b) (10 points) Find a linear transformation $(x, y) \rightarrow(s, t)$ that reduces Eq. (2) to one of the standard forms $u_{s s}+u_{t t}=0, u_{s s}-u_{t t}=0$, or $u_{s s}=0$. Express the "old" coordinates (x, y) in term of the "new" coordinates (s, t).

Solution

We complete the square in

$$
\mathcal{L}=\partial_{x}^{2}-2 \partial_{x} \partial_{y}+5 \partial_{y}^{2}=\left(\partial_{x}-\partial_{y}\right)^{2}+\left(2 \partial_{y}\right)^{2} .
$$

Define

$$
\partial_{s}=\partial_{x}-\partial_{y}, \quad \partial_{t}=2 \partial_{y} .
$$

Then, using the transpose of the linear mapping, we have

$$
x=s, \quad y=-s+2 t .
$$

Question 3 (16 points)

Consider the eigenvalue problem $-X^{\prime \prime}(x)=\lambda X(x), 0 \leq x \leq 2 \pi$, with periodic boundary conditions $X(0)=X(2 \pi)$ and $X^{\prime}(0)=X^{\prime}(2 \pi)$.
(a) (6 points) Show that the given boundary conditions are of the form

$$
\begin{aligned}
& \alpha_{1} X(a)+\beta_{1} X(b)+\gamma_{1} X^{\prime}(a)+\delta_{1} X^{\prime}(b)=0, \\
& \alpha_{2} X(a)+\beta_{2} X(b)+\gamma_{2} X^{\prime}(a)+\delta_{2} X^{\prime}(b)=0,
\end{aligned}
$$

and that if a function $f(x)$ satisfies the given boundary conditions then

$$
\left.f(x) f^{\prime}(x)\right|_{0} ^{2 \pi}=0
$$

What can you conclude from these facts about the eigenvalues in this problem?

Solution

To show that the given periodic boundary conditions are of the form

$$
\begin{align*}
& \alpha_{1} X(a)+\beta_{1} X(b)+\gamma_{1} X^{\prime}(a)+\delta_{1} X^{\prime}(b)=0, \\
& \alpha_{2} X(a)+\beta_{2} X(b)+\gamma_{2} X^{\prime}(a)+\delta_{2} X^{\prime}(b)=0, \tag{3}
\end{align*}
$$

take $a=0, b=2 \pi, \gamma_{1}=\delta_{1}=\alpha_{2}=\beta_{2}=0, \alpha_{1}=\gamma_{2}=1, \beta_{1}=\delta_{2}=-1$.
We have that

$$
\left.f(x) f^{\prime}(x)\right|_{0} ^{2 \pi}=f(0) f^{\prime}(0)-f(2 \pi) f^{\prime}(2 \pi)=f(0) f^{\prime}(0)-f(0) f^{\prime}(0)=0 .
$$

We know that if the periodic boundary condition are in the form of Eq. (3) and if $\left.f(x) f^{\prime}(x)\right|_{0} ^{2 \pi} \leq 0$ then there are no negative eigenvalues.
(b) (10 points) It is given that all eigenvalues are real. Prove that they are given by $\lambda_{n}=n^{2}$, $n=0,1,2, \ldots$ and give the corresponding eigenfunctions.

Solution

Since the eigenvalues are real and we know that there are no negative eigenvalues we have to consider the cases $\lambda=\beta^{2}>0$ and $\lambda=0$.

For $\lambda=0$ we have $X^{\prime \prime}=0$ which gives the solution

$$
X_{0}(x)=A x+B
$$

Since $X_{0}(x)=X_{0}(2 \pi)$ we find that $B=2 \pi A+B$ and thus $A=0$. The equation $X^{\prime}(0)=X^{\prime}(2 \pi)$ does not give any more information.
For $\lambda=\beta^{2}>0$ we get the solution

$$
X(x)=A \sin (\beta x)+B \cos (\beta x)
$$

The boundary condition $X(0)=X(2 \pi)$ gives

$$
B=A \sin (2 \pi \beta)+B \cos (2 \pi \beta)
$$

The boundary condition $X^{\prime}(0)=X^{\prime}(2 \pi)$ gives

$$
A=-B \sin (2 \pi \beta)+A \cos (2 \pi \beta)
$$

Multiplying the first equation by B and the second by A and adding together we find

$$
\left(A^{2}+B^{2}\right)(\cos (2 \pi \beta)-1)=0
$$

Since $A^{2}+B^{2} \neq 0$ (otherwise $A=B=0$) we get $\cos (2 \pi \beta)=1$ (and from here $\sin (2 \pi \beta)=0$).
This implies that $2 \pi \beta=2 \pi n$ and therefore $\beta=n$ with $n \in \mathbb{Z} \backslash\{0\}$. Moreover, since $\lambda=\beta^{2}$ we can take $\beta>0$ and therefore $\lambda_{n}=n^{2}, n=1,2,3, \ldots$.
Combining with the zero eigenvalue we earlier found we get $\lambda_{n}=n^{2}, n=0,1,2,3, \ldots$. For $\lambda_{n}>0$ the corresponding eigenfunctions have the form

$$
A_{n} \cos (n x)+B_{n} \sin (n x)
$$

that is, they are linear combinations of $\cos (n x)$ and $\sin (n x)$.

Question 4 (14 points)

Consider the partial differential equation

$$
\begin{equation*}
u_{x x}+u_{y y}=-E u, \tag{4}
\end{equation*}
$$

in the domain $0<x<a, 0<y<b$. Here $E>0$ is constant.
(a) (8 points) Separate variables using a solution of the form $u(x, y)=X(x) Y(y)$ and find the ordinary differential equations satisfied by $X(x)$ and by $Y(y)$.

Solution

We have

$$
X^{\prime \prime} Y+X Y^{\prime \prime}=-E X Y
$$

therefore

$$
\frac{X^{\prime \prime}}{X}=-E-\frac{Y^{\prime \prime}}{Y}=-\lambda .
$$

The two equations are

$$
-X^{\prime \prime}=\lambda X, \quad-Y^{\prime \prime}=(E-\lambda) Y .
$$

(b) (6 points) Assume now that the solution of Eq. (4) satisfies homogeneous Dirichlet boundary conditions, that is, $u(x, 0)=u(x, b)=u(0, y)=u(a, y)=0$. Show that Eq. (4) has a solution only if

$$
E=\frac{n^{2} \pi^{2}}{a^{2}}+\frac{m^{2} \pi^{2}}{b^{2}},
$$

where $n=1,2,3, \ldots$ and $m=1,2,3, \ldots$.

Solution

We have

$$
-X^{\prime \prime}=\lambda X, \quad X(0)=X(a)=0,
$$

and therefore

$$
\lambda_{n}=\frac{n^{2} \pi^{2}}{a^{2}}, \quad n=1,2,3, \ldots
$$

Moreover, we have

$$
-Y^{\prime \prime}=\left(E-\lambda_{n}\right) Y, \quad Y(0)=Y(b)=0 .
$$

This meaans that

$$
E-\lambda_{n}=\frac{m^{2} \pi^{2}}{b^{2}}, \quad m=1,2,3, \ldots
$$

and therefore

$$
E=\frac{n^{2} \pi^{2}}{a^{2}}+\frac{m^{2} \pi^{2}}{b^{2}}, \quad n, m=1,2,3, \ldots
$$

It is given that the eigenvalues for the problem $-Z^{\prime \prime}=\mu Z$ with $Z(0)=Z(c)=0$ are $\mu_{n}=n^{2} \pi^{2} / c^{2}, n=$ $1,2,3, \ldots$.

Question 5 (16 points)

Consider the function $f(x)=x^{3}, x \in[0,1]$, and its Fourier sine series

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x)
$$

(a) (4 points) Check if the Fourier series converges to $f(x)$ in the L^{2} sense in the interval $[0,1]$.

Solution

The Fourier series converges because the integral

$$
\|f\|^{2}=\int_{0}^{1}|f(x)|^{2} d x
$$

is finite.
(b) (6 points) What is the pointwise limit of the Fourier series for $x \in[-2,2]$?

Solution

To answer this question we must look at the odd-periodic extension $f_{e}(x)$ of x^{3}. The function x^{3} is already odd, so its odd extension is $x^{3}, x \in[-1,1]$. The periodic extension is obtained by repeating the graph of $x^{3}, x \in[-1,1]$ with period 2 .
Therefore the odd-periodic extension $f_{e}(x)$ is discontinuous at $2 k+1, k \in \mathbb{Z}$. For $x \in[-2,2]$ we have discontinuities at $x=-1$ and $x=1$.
Therefore the pointwise limit of the Fourier series is $f_{e}(x)$ for $x \in[-2,-1) \cup(1,1) \cup(1,2]$ and $\left[f_{e}\left(x^{+}\right)+f_{e}\left(x^{-}\right)\right] / 2$ for $x= \pm 1$.
At $x=1$ we have $f_{e}\left(1^{-}\right)=1$ and $f_{e}\left(1^{+}\right)=f_{e}\left(-1^{+}\right)=-1$. Therefore $\left[f_{e}\left(1^{+}\right)+f_{e}\left(1^{-}\right)\right] / 2=0$. From 2-periodicitiy (or a similar computation) we get that $\left[f_{e}\left(-1^{+}\right)+f_{e}\left(-1^{-}\right)\right] / 2=0$. Therefore at $x= \pm 1$ the pointwise limit is 0 .
(c) (2 points) Draw the graph of the Fourier series for $x \in[-2,2]$.

Solution

(d) (4 points) At which points in $[0,2]$ does the Gibbs phenomenon appear in the Fourier series and what is the overshoot at these points?

Solution

The Gibbs phenomenon appears at the points in $[0,2]$ where $f_{e}(x)$ is discontinuous, that is, at $x=1$. The discontinuity jump is $f_{e}\left(1^{+}\right)-f_{e}\left(1^{-}\right)=-2$, which means that the overshoot is $\simeq 0.09 \times 2=0.18$.

Question 6 (16 points)

(a) (8 points) Suppose that u is a harmonic function in the disk $D=\{r<1\}$ and that for $r=1$ we have $u(1, \theta)=1+5 \sin \theta+3 \cos 2 \theta$. Find the solution $u(r, \theta)$ for $r \leq 1$ and show that $u(r, \theta) \leq 9$ for $r \leq 1$.

It is given that the solution to the Laplace equation inside the disk $r<a$ has the form

$$
u(r, \theta)=\frac{C_{0}}{2}+\sum_{n=1}^{\infty} \frac{r^{n}}{a^{n}}\left(C_{n} \cos (n \theta)+D_{n} \sin (n \theta)\right)
$$

Solution

Setting $r=1$ in the expression for $u(r, \theta)$ (where $a=1$) we find

$$
u(1, \theta)=\frac{C_{0}}{2}+\sum_{n=1}^{\infty} C_{n} \cos (n \theta)+D_{n} \sin (n \theta)
$$

Comparing with the given expression for $u(1, \theta)$ we get $C_{0}=2, C_{2}=3, D_{1}=5$, and all other coefficients are zero. Therefore the solution is

$$
u(r, \theta)=\frac{C_{0}}{2}+C_{2} r^{2} \cos 2 \theta+D_{1} r \sin \theta=1+5 r \sin \theta+3 r^{2} \cos 2 \theta
$$

For the second part we can either use the maximum principle or estimate $u(r, \theta)$ directly. The maximum principle gives that the maximum of $u(r, \theta)$ is attained at the boundary and at the boundary we have

$$
u(1, \theta)=1+5 \sin \theta+3 \cos 2 \theta \leq 1+5+3=9
$$

Alternatively, we have

$$
u(r, \theta)=1+5 r \sin \theta+3 r^{2} \cos 2 \theta \leq 1+5 r+3 r^{2} \leq 1+5+3=9
$$

(b) (8 points) Suppose that a function w satisfies the advection-diffusion equation $w_{t}+2 w_{x}=w_{x x}$ for $0<x<1$ and $t>0$ together with Robin boundary conditions $w_{x}=2 w$ at $x=0$ and $x=1$, and the initial condition $w(x, 0)=6 x$, for $0<x<1$. Show that the total mass, defined by

$$
M(t)=\int_{0}^{1} w(x, t) d x
$$

satisfies $d M(t) / d t=0$ and deduce that $M(t)=3$ for all $t \geq 0$.

Solution

We have that

$$
\frac{d M}{d t}=\int_{0}^{1} w_{t} d x=\int_{0}^{1}\left(w_{x x}-2 w_{x}\right) d x=w_{x}-\left.2 w\right|_{0} ^{1}=0
$$

For $t=0$ we have

$$
M(0)=\int_{0}^{1} 6 x d x=\left.3 x^{2}\right|_{0} ^{1}=3 .
$$

Therefore $M(t)=M(0)=3$ for all $t \geq 0$.

End of the exam (Total: 90 points)

